1		Second, I will discuss Ameritech's OSS proposals to CLECs in this region,			
2		including those who plan to provide service to Wisconsin consumers.			
3					
4		Third, I will discuss the evidence developed to date that demonstrates that			
5		Ameritech's systems are not yet operational nor capable of providing			
6		commercially reasonable levels of support for competitive local exchange carriers			
7		in both the resale and unbundled network element (UNE) environments. My			
8		discussion includes not only an evaluation of CLEC testing experiences to date,			
9		but a review of the materials and information submitted by Ameritech-Wisconsin			
10		in response to Staff's requests. These materials conclusively demonstrate that the			
11		interfaces and underlying OSSs have not yet been adequately tested.			
12					
13		Finally, as to Ameritech's progress toward achieving the objective of offering			
14		non-discriminatory access to its OSSs, I will explain why Ameritech's proposed			
15		reporting requirements fall short of the mark. I will also show how information			
16		could be provided by Ameritech to demonstrate the extent to which parity exists.			
17		Such measuring mechanisms are not in place at this time.			
18					
19	<u>OPE</u>	RATIONS SUPPORT SYSTEMS			
20					
21	Q.	WHAT ARE "OPERATIONS SUPPORT SYSTEMS" AS THEY ARE			
22		USED IN THE TELECOMMUNICATIONS INDUSTRY?			
23	A.	Operations support systems, sometimes referred to as OSS, are the computer-			
24		based systems and data bases and work processes that operate in combination to			
25		deliver important customer-oriented and business support functions. These			
26		systems support a variety of carrier interactions with customers, including those			
27		related to: ordering services; arranging for changes to service arrangements;			
28		maintaining services; inquiring about service availability; and billing. These			

1	systems also provide the information and data used by a carrier's representatives to
2	make the moment-to-moment decisions necessary to respond to customer
3	requests.
4	
5	The accuracy, timeliness and completeness of information and functionality
6	provided by OSS are critical to a carrier's efforts to satisfy its customers. As
7	recognized by the FCC in its First Report and Order, without timely and reliable
8	operations support systems, a carrier is effectively prevented from providing
9	quality telecommunication services:
10	
11 12 13 14 15 16 17 18 19 20	[I]f competing carriers are unable to perform the functions of pre- ordering, ordering, provisioning, maintenance and repair and billing for network elements and resale services in substantially the same time and manner that an incumbent can for itself, competing carriers will be severely disadvantaged, if not precluded altogether, from fairly competing. Thus providing nondiscriminatory access to these support systems functions, which would include access to the information such systems contain, is vital to creating opportunities for meaningful competition.
21	First Report and Order, Implementation of the Local Competition Provisions in
22	the Telecommunications Act of 1996, CC Docket No. 96-98 (released August 8,
23	1996), ¶518.
24	
25	Because the reliability of support systems is vital to providing and maintaining
26	service to end-users, the design and operational characteristics for these systems
27	are extremely important. Support systems that fail or operate ineffectively create
28	customer dissatisfaction, and systems that are unreliable in terms of
29	responsiveness or accuracy undermine a carrier's best efforts to ensure customers
30	get the services they request when they request them. Quite simply, a carrier

1		cannot conduct its business effectively or efficiently without strong, well-designed			
2		and well-developed support capabilities built into its OSSs.			
3					
4		Most Operations Support Systems, including Ameritech's, include two critical			
5		components: interfaces and gateways.			
6					
7	Q.	FOR PURPOSES OF YOUR TESTIMONY, WHAT DO YOU MEAN BY			
8		THE TERM "INTERFACE?"			
9	A.	An interface is a pathway that enables access to the information and			
10		functionalities that are maintained in Ameritech's systems and databases. An			
11		interface can also be a path that is used to deliver information from Ameritech's			
12		systems and databases to another system or to a system user, like AT&T. For			
13		example, an interface to Ameritech's pre-ordering system would include a menu			
14		of services available in a particular location from which an end-user could choose.			
15		A pre-ordering transaction that is prepared from the printed menu would then be			
16		presented by the end-user to the pre-ordering interface for processing by			
17		Ameritech's pre-ordering system. For example, a "Firm Order Confirmation" (or			
18		FOC) is an example of an out-bound interface transaction it is created as a			
19		result of a system action and delivered to a competitive provider system to advise			
20		that an order has been received and processed.			
21					
22		Many interfaces, including those proposed by Ameritech, are fully mechanized or			
23		electronic. Electronic interfaces rely entirely on computer and			
24		telecommunications technology to transfer information. These interfaces create			
25		the opportunity to have computer systems interact directly with each other to			
26		quickly and accurately complete transactions, without much need for human			
27		involvement or manual intervention.			
28					

1		Since interfaces are the critical conduit to underlying systems, it is typical for the			
2		interface specifications to be quite detailed. In that way, the parties can ensure			
3		that there is common understanding on both sides of the interface of what			
4		each data element and data field means, how they are configured and where			
5		standards to be defined by other parties are applied or expected.			
6					
7	Q.	WHAT DO YOU MEAN BY THE TERM "GATEWAY?"			
8	A. ·	A gateway is a programmed system that interprets the content of an electronic			
9		message and directs the message to a particular data base or processing location,			
10		depending on the message content. The gateway then serves as the ongoing			
11		electronic interface between the user system and the data base that contains the			
12		stored information. In this way, the gateway performs the function of formatting,			
13		translating, validating and routing information between CLECs and the incumbent			
14		carrier.			
15					
16		Gateways are also points of access and egress where transactions are subjected to			
17		a screening process for a number of possible reasons. For instance, the nature of a			
18		user requesting the transaction may need to be validated for permission to make			
19		the request; a transaction type may need to be routed based on the content of the			
20		transaction; or the sender-system or recipient-system related to the transaction			
21		may need to be interpreted or referenced. From the egress perspective, a gateway			
22		may serve to route reports to particular departments or to different printers on a			
23,		local computer network.			
24					
25	Q.	ARE THERE ADDITIONAL UNIQUE TERMS OR DESCRIPTIONS			
26		NECESSARY FOR AN UNDERSTANDING OF AMERITECH'S			
27		OPERATIONS INTERFACES?			

1	A.	Yes. The telephone industry has recently begun to use terminology that			
2		distinguishes the features, functions and business roles of some of the specific			
3		upport systems. For purposes of understanding Ameritech's offering, five terms			
4		are relevant: pre-ordering; ordering; provisioning; repair and maintenance; and			
5		billing.			
6					
7		Pre-ordering refers to activities that support gathering sufficient information from			
8		a potential customer about the services required or requested so that the			
9		information can be translated into an order for service and placed by the end-			
10		user's selected local service provider. Pre-ordering work by a CLEC results in an			
11		order for telephone service that involves the wholesaler and the CLEC working			
12		together to fulfill the end-user request. The pre-ordering functions included in			
13		Ameritech's offering include: access to a customer service record; telephone			
14		number selection; due date selection; feature availability and address verification.			
15		See Ameritech's Response to ICC Staff Data Request JEJ 3-1, attached as			
16		Exhibit 12 (TMC-1).			
17					
18		Ordering is this second step, following pre-ordering, when the pre-ordering			
19		process is successfully accomplished and the service is actually ordered. The			
20		ordering functions included in Ameritech's offering include: ordering of resold			
21		services and line side ports (including the ability to send changes to orders			
22		previously sent); and ordering trunk side UNEs. See Ameritech's Response to			
23		ICC Staff Data Request JEJ 3-2, attached as Exhibit 12 (TMC-1).			
24					
25		Provisioning are those activities necessary to fulfill the end-user's order. The			
26		provisioning functions included in Ameritech's offering include: order			
27		confirmation, order jeopardy and order completion - all designed to allow a			

1		CLEC to track an order through Ameritech's provisioning system. See Ameritech's			
2		Response to ICC Staff Data Request JEJ 3-3, attached as			
3		Exhibit 19 (TMC-1).			
4					
5		Repair and maintenance are the activities that are undertaken to respond to			
6		customer-detected problems in the service arrangement. The repair and			
7		maintenance functions included in Ameritech's offering include: trouble entry and			
8		trouble status. See Ameritech's Response to ICC Staff Data Request JEJ 3-5,			
9		attached as Exhibit 17 (TMC-1).			
10					
11		Billing refers to those activities that involve carriers exchanging information			
12		about subscriptions, usage of services, and other records that will ultimately result			
13		in sending an end-user an invoice for telephone services. The billing functions			
14		included in Ameritech's offering include: daily usage; bill lines and bill trunks.			
15		See Ameritech's Response to ICC Staff Data Request JEJ 3-4, attached as			
16		Exhibit $\frac{12}{12}$ (TMC-1).			
17					
18	Q.	UNDER WHAT CIRCUMSTANCES IS IT APPROPRIATE TO			
19		CONCLUDE THAT OPERATIONS SUPPORT SYSTEMS ARE			
20		OPERATIONALLY READY?			
21	A.	Operational readiness is the end state of a systems development effort. It is			
22		achieved when the systems are providing useful, reliable results in accordance with			
23		their proposed function and design.			
24					
25		OSS access is operationally ready when both Ameritech and the CLECs work			
26		together satisfactorily to deliver the services which they were designed to deliver.			
27		Operational readiness cannot be unilaterally declared by the systems provider.			

1		Rather, both users must work together to establish that all aspects of the support			
2		functionality is operationally ready.			
3					
4	Q.	IS END-TO-END SYSTEMS TESTING CRITICAL FOR ASSESSING			
5		OPERATIONAL READINESS?			
6	A.	Yes. The establishment of efficient interfaces and procedures for the exchange of			
7		information between Ameritech's systems and those at AT&T (or other CLECs) is			
8		absolutely essential for the development of competition in the local services market.			
9		CLECs entering the local market on a large scale will be highly dependent upon			
10		their ability to quickly and accurately obtain local services and unbundled network			
11		elements from Ameritech, which in turn will depend on the efficient exchange of			
12		information between the two. The efficiency of such an exchange can only be			
13		assessed by end-to-end systems testing.			
14					
15		Moreover, because so much of the information required by competitors resides			
16		exclusively in Ameritech's control, Ameritech is in a unique position to control the			
17		ability of its competitors to enter the local services market. Thus, unless it can be			
18		conclusively demonstrated that Ameritech provides non-discriminatory access to			
19		that information - or access that is equal in quality, in terms of timeliness and			
20		accuracy, to that provided by Ameritech to its own representatives - the OSS cannot			
21		be deemed ready to support competitive entry.			
22					
23		The non-discriminatory access necessary to support large carriers, such as AT&T, is			
24		more complex than the needs of small start-up CLECs entering the market on a			
25		more limited or narrowly-focused scale. A CLEC that does not expect to ramp up			
26		quickly to a sizable customer base can enter a local market without advanced			
27		electronic operations support systems. Such CLECs therefore have the flexibility to			

1

23

24

2 manual intervention. 3 By contrast, a CLEC like AT&T that is targeting a substantial customer base 4 5 requires more advanced operations support systems capable of supporting 6 substantial volumes. Further, because AT&T already has extensive existing 7 operations support systems of its own – with its own business rules and procedures 8 for utilizing those systems - AT&T must develop systems interfaces that permit its 9 existing systems to communicate and interact with the operations support systems 10 and interfaces of the incumbent LECs. 11 WHAT ARE THE STEPS TOWARD OPERATIONAL READINESS? 12 Q. 13 Α. The development of operationally-ready electronic access to operations support 14 systems functionality is an extremely complex and difficult undertaking, which 15 requires not only considerable time, but thorough testing and actual operation to ensure accurate, reliable and timely joint operation of the two systems. The 16 17 infrastructure on the Ameritech side of the interface is immense, encompassing 18 numerous Ameritech systems and databases which contain information which is 19 necessary to process transactions. AT&T must be able to reliably interact with each 20 of those systems to provide local services. 21 22 A systems development effort requires a number of different steps, including

enter the market using volume-limited OSS or procedures that may entail substantial

11

systems analysis, specification refinement, system design, system development,

system testing, integration testing, training and implementation. If any of these

One incumbent, US West, has admitted that the development of operationally ready electronic interfaces between two complementary operations support systems is an "extremely complex" task. See US West Petition for Waiver, <u>Implementation of the Local Competition Provisions in the Telecommunications Act of 1996</u>, CC Docket No. 96-98 (filed December 11, 1996), p. 4 and attached affidavit of Robert H. Van Fossen.

steps are skipped or abbreviated, serious problems of order rejection or other 1 misunderstandings between the systems are likely to arise, as has in fact occurred 2 3 repeatedly in AT&T's efforts to enable its operations support systems to interface 4 with Ameritech's systems. 5 6 PLEASE DESCRIBE THE DIFFERENT STEPS YOU IDENTIFIED Q. 7 ABOVE. In the systems analysis phase, the goals are analyzed so the specific processing 8 Α. 9 needs can be laid out in broad measure. Determinations of the business functions 10 that the system must address are made as well as preliminary decisions as to which 11 are to be computerized and which will be manual processes. The analysis of the 12 overall systems and the business needs causes questions to be raised relating to data 13 definitions, the conditions under which information is required or optional, and whether information must be obtained from data bases, supplied by customers, 14 15 validated or accepted as is. Hundreds of questions regarding data definitions and the 16 ways data are used in the systems are the norm, not the exception. These questions 17 are ordinarily reviewed with the users of the input and output transactions. 18 The systems analysis phase is followed by a specification refinement activity. In 19 this activity, the details and definitions of data elements, records and data bases are 20 updated, recognizing that the initial specifications were neither complete nor 21 universally understood. The need for such specification refinement may appear at 22 23 any stage of the systems development process. The process of specification 24 refinement can take several iterations before the parties find that all questions are 25 resolved and no further definition of the specifications is required. Specifications

are only considered "final" when systems built to those specifications are providing

useful, reliable results in accordance with their function and design.

26

27

28

1		The next step is the system design phase. The design effort takes into consideration			
2		the technical environment for the system, the various regional or local exceptions,			
3		the daily/weekly/monthly processing issues to be addressed and more. The system			
4		will be broken down into modules that are logical components for computer			
5		processing or manual methods and procedures development.			
6					
7		Once the system is designed, the actual systems development (i.e., programming)			
8		efforts are begun. Systems development is where programmers and data base			
9		developers get to work coding the modules. The manual activities are also			
10		developed which require methods and procedures analysts to work with job or task			
11		designers to place the manual activities into logical sequences. These efforts also			
12		result in the design of forms, screens and reports. The merging of computerized			
13		modules and manual procedures are then followed by testing that is best			
14		accomplished through a structured manner and discipline.			
15					
16		System testing is the step that bears out the design and programming. Testing must			
17		separately validate the construction and development of the individual modules, the			
18		programs which comprise many modules, the systems that comprise many programs			
19		and, on an integrated basis, all of the components, both computerized and manual,			
20		under a variety of conditions. System testing serves to demonstrate that the system			
21		components perform according to the design of what should happen and to			
22		determine capacities or constraints in terms of volumes, seasonal differences,			
23		special processing requirements and the like.			
24		,			
25	Q.	IS INTERNAL TESTING BY A SYSTEMS PROVIDER SUFFICIENT TO			
26		DETERMINE WHETHER THE SYSTEMS ARE OPERATIONALLY			
27		READY?			

1	A.	No. When systems are developed for the purpose of working with other systems
2		- which is the case for AT&T's systems and Ameritech's systems it is
3		imperative that the two complementary systems be tested by the parties in a joint
4		manner to ensure that they will communicate properly with each other. This is
5		referred to as end-to-end or full "integration testing." Integration testing is the
6		only effective way to test the adequacy of a systems interface. This phase is the
7		opportunity for the entire spectrum of systems interactions to be tested without
8		adversely affecting actual customers in the marketplace.
9	,	
10		Internal testing simply cannot achieve this important goal. See ICC Staff Jennings
11		Supp. Reb., ICC Staff Ex. 4.02., p. 2 ("Just because Ameritech has completed
12		internal testing of its various OSS, there is no assurance that other carriers will be
13.		able to effectively utilize the OSS in a commercially feasible manner.") (attached
14		as Exhibit 13 (TMC-2)).
15		
16		Full integration testing, on the other hand, enables the parties to identify problems or
17		inadequacies in the systems or interface design or the interface specifications. Even
18		minor changes may result in significant rework of systems that will need to be tested
19		again. Indeed, it was the Wisconsin Commission and Staff's concerns regarding the
20		adequacy of testing that caused the parties to specifically focus on how testing
21		relates directly to usability and reliability.
22		
23		Testing must then be followed by the development of methods and procedures
24		materials and the training of personnel to be certain that staff know how to operate
25		the system, to interact with the screens, forms, etc. Once these steps have all been
26		completed, the system can be implemented. Only when the implementation phase
27		has been successfully completed can it properly be said that the systems are
28		operationally ready.

1		
2	Q.	IN YOUR EFFORTS TO ANALYZE ACCESS TO AMERITECH'S
3		OPERATIONS SUPPORT SYSTEM FUNCTIONALITY, WHAT
4		DOCUMENTATION DID YOU REVIEW AND WHEN DID YOUR
5		REVIEWS TAKE PLACE?
6	Α.	I began my analysis activities in October 1996 in Chicago, where I examined
7		Ameritech's published Interface Specifications for the interfaces to the Ameritech
8		systems. I also spent considerable time in Ameritech's Discovery Room at their
9		Chicago offices, reviewing the OSS-related binders, documents, brochures,
10		handbooks and a videotape made available by Ameritech therein. As Ameritech
11		made additional material available through the end of 1996 and into 1997, I
12		reviewed that material as well, including materials containing printouts and
13		correspondence relative to testing of some of the interfaces with CLECs other
14		than AT&T.
15		
16		I was also given access to relevant correspondence files of AT&T managers
17		employed in Chicago that contained letters, attachments, reports, meeting agenda
18		and minutes and fresentation materials such as view-graphs and spread sheets
19		pertaining to OSS matters that were issued or received by AT&T. I was also able
20		to spend considerable time reviewing and evaluating Ameritech testimony and
21		exhibits as they have been filed and tried in proceedings in Michigan, Illinois,
22		Ohio and Wisconsin. Ameritech also provided information on several occasions
23		to the FCC that was also made available to me by AT&T's Chicago, New Jersey
24		and Washington, DC staffs.
25		
26		Last, but certainly not least, I spent considerable time closely examining the
27		testing that AT&T had been executing with Ameritech during the Illinois Service
28		Readiness Trial and in the Michigan Market Readiness Trial. In many cases, the

1		testing inputs, outputs, reports, statistics, error details, completion details, daily		
2	reports and weekly reports that I reviewed were prepared by Ameritech for AT&T			
3				
4	AMI	ERITECH'S PROPOSED OPERATIONS SUPPORT SYSTEMS		
5	INT	ERFACES		
6				
7	Q.	WHAT ARE YOUR FINDINGS AS TO THE OPERATIONAL		
8		READINESS OF THE AMERITECH OSS INTERFACES?		
9	A.	Given the present status of Ameritech's OSS interfaces, new entrants are many		
10		months from being able to effectively compete with Ameritech in the local		
11		market. I base this opinion on the limited capabilities of Ameritech's current		
12		support systems and interfaces as well as the amount of work that will be		
13		necessary to move these systems and interfaces to a state of operational readiness.		
14				
15		As I noted above, operational readiness must be a declaration by users on both		
16		sides not just the Ameritech side that the systems are working together		
17		consistently and predictably through the interfaces. It is impossible to attain		
18		operational readiness without thorough and well documented testing of the		
19		systems as they interact on both sides of the interfaces. Once they are		
20		satisfactorily tested as to functionality, the systems can be subjected to tests under		
21		market condition volumes to demonstrate operational readiness with regard to		
22		parity and capacity concerns.		
23				
24	Q.	WHAT DETERMINATIONS DO YOU RELY ON IN CONCLUDING		
25		THAT THE SYSTEMS ARE NOT OPERATIONALLY READY?		
26	A.	My concerns about the current status of Ameritech's systems fall into the		
27		following categories:		
28				

1		(1)	the interface specifications have not sufficiently stabilized;			
2		(2)	the systems have not been subjected to adequate integration testing;			
3		(3)	the testing that has been completed demonstrates that Ameritech is relying			
4			heavily on systems and operating procedures that are not reliable; and			
5		(4)	there is no evidence that Ameritech's offering will provide access			
6			on a non-discriminatory basis.			
7						
8		Each	will be discussed in turn.			
9						
0	INTE	ERFAC	E SPECIFICATIONS			
1						
12	Q.	HOV	V ARE AMERITECH'S PROPOSED OPERATIONS SUPPORT			
3		SYST	TEMS INTERFACES DESIGNED?			
4	A.	Amer	itech is providing nine separate OSS interfaces, each supporting a different			
5		functi	function or combination of functions. These will be a pre-ordering transactional			
6		interf	interface (EDI), a pre-ordering batch interface (file transfer), a transactional			
7		order	ordering interface (EDI), a batch ordering interface (ASR), a provisioning			
8		interf	interface, a maintenance and repair interface (T1M1), a usage billing information			
9		interf	interface (EMR), a resale billing information interface (AEBS), and a UNE billing			
20		inform	nation interface (CABS). Each of these are in different stages of definition			
21		and c	ompleteness.			
22						
23		Obvio	ously, no CLEC can hope to finalize its "side of the interface" until the			
24		specif	fications and detailed design components of each of the interfaces are			
25		finali	zed by Ameritech. But Ameritech has been moving the target for the			
16		orderi	ing and pre-ordering interfaces since these were initially published in April			
:7		1996,	making numerous changes to the interface specifications. While I am not			
28		critica	al of Ameritech for its continuous revision and enhancement to its interfaces,			

17

28

1		many of these changes have required AT&T and its systems vendors to make
2		corresponding changes to the AT&T "side of the interface".
3		
4		The paces of the changes and the lack of coordination of changes are creating
5		additional weaknesses in the interfaces. For instance, surprise system changes to
6		the wholesale billing interface in late 1996 prevented AT&T from receiving
7		accurate (i.e., balanced) and payable wholesale bills from Ameritech in January
8		and February (and most likely in March). Ameritech has agreed to a financial
9		arrangement, but has yet to correct the underlying problem. Moreover, Ameritech
10		will not commit to a pre-announced system and interface change process that
11		would enable AT&T to reasonably implement complementary changes or be
12		award of the nature of changes to initiate "due diligence" evaluations of the
13		Ameritech implementation. A more orderly process of introducing changes to the
14		interfaces and underlying systems is explained later in this testimony.
15		
16		Most work to date as been focused on the pre-ordering and ordering interfaces.
17		As Ameritech and its competitors continue to test, evaluate and rely on the other
18		interfaces and supporting systems, they will most likely be similarly subjected to
19		revisions and enhancements.
20		
21	Q.	HOW SHOULD AMERITECH NOTIFY ITS CLEC USERS OF CHANGES
22		NEEDED TO THE INTERFACES AND TO THE UNDERLYING
23.		SYSTEMS THAT INTERACT WITH THE CLEC SYSTEMS?
24	A.	Once the first generation of interfaces and support systems for effective local
25		competition are stabilized, planned changes should be forwarded to CLEC users
26		in written form on a scheduled basis, optimally no more than once per year, but
27		certainly on an as-needed basis according to the magnitude of the proposed
28		innovation or change. Major software releases that will impact the OSS interfaces

1		should be announced six-to-twelve months in advance; new products available for
2		resale by CLECs should be announced six-to-nine months prior to announcement
3		to the retail markets; new or revised business rules that would require CLEC
4		adaptation of systems and procedures should also carry a six-to-nine month
5	,	notification period; and, new manual processes that would facilitate processing of
6		transactions through the OSS interfaces should be announced three-to-six months
7		ahead of time. Emergency corrections or fixes need to be dealt with on an
8		expedited, but well-managed, basis to ensure that implementing the correction is
9		not worse than the problem it is solving.
10		
11		The ILEC/CLEC team effort needs to recognize the importance of pre-
12		notification, thorough development of system requirements, interface and system
13		specifications, testing requirements and planning and the implementation phase of
14		each change. Timetables like those I mention above would provide opportunities
15		for innovations to be suggested by CLECs and Ameritech in a cooperative
16		manner. As industry standards are modified by the responsible organizations such
17		as the Ordering and Billing Forum, the parties can take advantage of these
18		improvements on an orderly basis.
19		
20	Q.	HAS AMERITECH PROPOSED INTERFACE SPECIFICATIONS FOR
21		THE ORDERING AND PROVISIONING OF UNBUNDLED NETWORK
22		ELEMENTS?
23	A.	No. Discussions to date between AT&T and Ameritech have centered largely
24		around the interfaces to be used for resale services. The discussions related to the
25		purchase of unbundled network elements, and more importantly, combinations of
26		unbundled network elements (the platform) have been only extremely preliminary
27		in nature. In large part this is because AT&T and Ameritech cannot agree on how
28		the platform will be provisioned operationally (although the Michigan

1		Commission recently issued an Order adopting AT&T's position on the manner in
2		which this element must be made available). The parties' disagreement on this
3		issues has made it very difficult to have meaningful discussions about how the
4		ordering interfaces should be designed.
5		
6		At minimum, it would appear that ordering the standard combination would
7		require the use of two separate interfaces the ASR interface and the EDI
8		interface. But it is still unknown how that ordering process will flow. Because
9		the ASR format was designed for support of access services and has traditionally
10		been used only in the access service arena, the ASR form limits the types of
11		unbundled elements that can be ordered. Moreover, it is not clear how two orders
12		submitted separately would be processed to provide service to a single customer.
13		Notably, neither Warren Mickens nor Joseph Rogers, Ameritech's OSS experts,
14		was able to explain at the Ohio proceedings how AT&T would order the standard
15		UNE combination Ameritech is allegedly making available to AT&T through
16		various Interconnection Agreements.
17		
18		
19	AME	RITECH/AT&T SERVICE AND MARKET READINESS TESTING
20		· •
21	Q.	DOES THE TESTING PERFORMED TO DATE BY AMERITECH AND
22		AT&T SUPPORT THE CONCLUSION THAT THE SYSTEMS AND
23		INTERFACES ARE WORKING TOGETHER SUFFICIENTLY TO
24		SUPPORT LOCAL COMPETITION?
25	A.	No. Extensive work has been done by Ameritech and AT&T for trials involving
26		customer accounts in Illinois and Michigan. The results of this testing indicate
27		that there remain many unresolved problems and much additional evaluation is
28		necessary. Most troubling, the test records indicate that many of the undetected

20

1		problems would, in all likelihood, have had deleterious effects on competition and
2		have resulted in poor customer service if the testing had, in fact, been actual
3		service orders. The test results convincingly demonstrate that AT&T cannot
4		currently rely on Ameritech's systems for large-scale market entry using resale or
5		entry in the UNE environment.
6		
7	Q.	PLEASE DESCRIBE THE RESULTS OF THE ILLINOIS SERVICE
8		READINESS TESTING.
9	A.	AT&T has been conducting service readiness testing of Ameritech's interfaces for
10		the Illinois market since October 6, 1996. Because the interfaces on which
11		Ameritech-Wisconsin will rely are region-wide interfaces ² , the results of this
12		other-region testing is relevant to the inquiry to be conducted by this Commission.
13		As the results below demonstrate, the Illinois testing alone raises substantial
14		questions about the readiness of Ameritech's systems.
15		
16		First, the local service resale orders provided by AT&T to Ameritech for
17		processing were rejected at a rate of 42%, and 54% percent of the total orders
18		processed required manual intervention, review or processing. More specifically,
19		in the over four months of testing in Illinois from October 6 to February 14, a total
20		of 328 ³ AT&T orders for service resale were processed by Ameritech. Of those

Ameritech witness have stated that the interfaces are region-wide, testifying that there are no differences in the interfaces from State to State. Nonetheless, while the interfaces appear to be regional, there are operational and network differences in each State that can create added and unanticipated problems. For instance, when AT&T began conducting testing in Michigan, many of its orders were rejected because only 70% of the exchanges in Michigan had been programmed for intraLATA presubscription. Thus, orders with a PIC selection that were accepted in Illinois were rejected in Michigan.

The information used to report testing results in this testimony is taken from Ameritech testing reports. The actual number of "transactions" processed and the status of any single transaction at any particular time can be recorded in a variety of ways. For purposes of consistency and convenience, I have adopted Ameritech's methodology for reporting test results.

orders, only 181 (or 56 percent), were completed. Roughly half of the AT&T orders

(142) were rejected by Ameritech's systems. The results of the testing are as

follows:

		Percentage
Total Order Transactions Processed	328	
Orders Rejected	142	42%
Orders Completed	181	55%
Orders Pending	5	3%
Orders Processed Manually	178	54%
Rejected	47	25%
Completed	126	68%
Pending	5	7%
Orders Processed Automatically	150	46%
Rejected	95	67%
Completed	55	33%
Pending	0	

These results alone demonstrate that the Ameritech's systems are far from being operationally ready. No carrier could possibly begin commercial service to customers with these results. The Illinois Service Readiness Testing Results are attached as Exhibit _______ (TMC-5).

Q. DO THE TESTING RESULTS REFLECT TESTING PROBLEMS AND THEIR RESOLUTION?

Yes. I have attached to my testimony a copy of the Ameritech/AT&T Illinois 1 A. Significant Events/Open Issues Tracking document, dated March 14, 1997, 2 Exhibit 15 (TMC-6). This document, which was prepared by Ameritech and 3 is shared on a periodic basis with AT&T, serves as the basis for assignment to 4 5 AT&T or Ameritech staff of investigations as to the cause of errors and need to 6 make corrections to procedures. A "significant event" arises when conditions that 7 give rise to the cause of processing problems are unknown and require research. 8 either by Ameritech or by AT&T, or where certain activities are yet to be 9 completed that will change the ways the transactions will be processed. To close 10 one of these issues, Ameritech or AT&T or both must implement some change to 11 its systems, interfaces or operating procedures. 12 13 The report indicates that 62 "significant events" have arisen in the testing of 14 Ameritech's resale ordering interface since October 10, 1996. As of March 14, there were still 22 "open" items - some of them several months old. It has 15 16 sometimes taken weeks or even months to close an item, during which time 17 ordering interactions had to be suspended or worked around to continue the 18 testing. 19 20 Q. DID THE TESTING RAISE ANY ADDITIONAL CONCERNS? 21 A. Yes. A further serious concern for AT&T revealed during the testing of the resale 22 ordering interface is the fact that many of AT&T's orders were not processed 23 electronically (despite being delivered to Ameritech electronically), but instead 24 were dumped from the designed processing stream and subjected to manual 25 processing by Ameritech. Of the 328 test orders processed, 54 percent were 26 processed by Ameritech using some manual procedures, and of the 181 orders that 27 were completed, 70 percent involved manual intervention.

329

1		Moreover, contrary to Ameritech's claims, this high incidence of manual
2		processing cannot be explained away by the content or complexity of the orders
3		that AT&T submitted to Ameritech, for those orders were not unusual or
4		complex. Many of them were simple migration orders. AT&T anticipates that the
5		degree of manual intervention will only increase as AT&T attempts to resell more
6		complex types of telecommunications services.
7		
8	Q.	WHY IS AT&T CONCERNED ABOUT THE DEGREE TO WHICH
9		AMERITECH RELIES ON MANUAL INTERVENTION?
10	A.	Ameritech's heavy reliance on manual processing is troublesome and unacceptable
11		as a basis for actual market entry. My professional experience is, and
12		Ameritech's OSS experts, Warren Mickens and Joseph Rogers, have agreed, that
13		manual processes are incapable of handling large volumes of transactions and are
14		likely to stress Ameritech's ability to deliver timely and efficient services.
15		Manual procedures may also yield inconsistent results, increase the likelihood for
16		delays in processing and create errors that would otherwise be avoidable.
17		
18		Moreover, it has been difficult to assess the full impact or magnitude of this
19		problem because Ameritech has been so reticent to provide AT&T with a list of
20		the support activities which are being done on a manual basis and the reasons why
21		orders cannot be processed electronically. Indeed, Ameritech has utterly refused
22		to provide AT&T with information about the circumstances that produce these
23		results. AT&T personnel involved in testing have asked repeatedly for
24		explanations of what gives rise to the requirement for manual processing. To
25		date, Ameritech has refused to provide the requested information, including
26		information necessary to reduce this manual intervention on a systematic basis.
27		At a hearing on these issues in Ohio, Warren Mickens, one of Ameritech's OSS

1		experts, flatly refused to share this type of information with CLECs, testifying that
2		they had no need to know.
3		
4		At that same hearing, Joseph Rogers, another Ameritech OSS expert, reluctantly
5		agreed to provide information to AT&T regarding the circumstances under which
6		AT&T orders fall to manual procedures. However, Ameritech subsequently
7		refused to provide this information, characterizing Mr. Rogers' sworn testimony as
.8		"thoughts" he shared on an "efficient approach" to "enhancing" Ameritech's
9		ordering system and concluding that Ameritech resources would not be best spen
10		on explaining manual processing to AT&T. The AT&T/Ameritech letters
11		relevant to this problem are attached as group Exhibit $\frac{1}{2}$ (TMC-7).
12		
13		In yet another attempt to secure this information, AT&T requested an opportunity
14		to depose Mr. Rogers to explore this and other areas in which Ameritech has
15		made only limited information available (including the results of CLEC testing
16		that Ameritech alleges has taken place). Ameritech again refused to cooperate
17		arguing that no matters remained to be addressed that has not already been
18	•	explored. See March 11 letter from Michael Paulson to Joan Marsh, attached as
19		Exhibit 17 (TMC-8). Subsequent to this letter, a deposition has been
20		scheduled.
21		
22	Q.	UNDER WHAT CONDITIONS WOULD AMERITECH PRIORITIZE
23		PROCESSING OF AMERITECH SERVICE ORDERS AHEAD OF CLEC
24		SERVICE ORDERS?
25	A.	While AT&T has not been generally informed of the reasons causing AT&T
26		orders to be manually processed, AT&T has obtained information suggesting at
27		least one way in which manual processing will produce discriminatory results.
28		Ameritech has advised AT&T that manual intervention of AT&T resale orders

25

1	will occur whenever an AT&T resale service order contains information in the
2	"Remarks" section. In Ameritech's definition of its use of Remarks ("RMKS")
3	for its Universal Service Order, the Remarks section is provided so that carriers
4	may include "additional instructions needed to supplement information in the
5	various sections of the order." (Ameritech Pocket USOC and FID Book, January
6	1996, p. 59). It is AT&T's understanding that the only way it can "supplement
7	information in the various sections of the order" is to use "Remarks" in the same
8	manner as does Ameritech for its own retail service orders.
9	
10	The manner in which Ameritech receives electronic CLEC resale orders from the
11	ordering interface is to first process them through the "MOR Tel Order Server."
12	See Ameritech Submission to the FCC on OSS, p. 13, attached as Exhibit 22
13	(TMC-13). In those cases where the MOR Tel Order Server detects Remarks in
14	the CLEC order, it "kicks out" the order for manual review. This manual step
15	consumes time and prevents the continued systematic and uninterrupted flow of
16	the CLEC resale order into the Ameritech Service Ordering Processor.
17	·
18	After being manually reviewed, the CLEC orders are either re-entered into the
19	electronic processing stream, rejected to the CLEC or are processed manually into
20	the Ameritech Service Ordering Processor. Ameritech service orders are not
21	processed through the MOR Tel Order Server. Ameritech service orders
22	containing "Remarks" are processed directly into the Ameritech Service Ordering
23	Processor. Reviews of Ameritech's Remarks, if any, are performed by service
24	center, installation or dispatching staff well ahead of an AT&T order that
25	contained Remarks and was therefore stopped for manual examination.
26	

1	Q.	WILL THE DIFFERENCES IN PROCESSING RESULT IN ANY
2		SERVICE-AFFECTING DISPARITIES?
3	A.	Yes. An Ameritech service order to connect telephone service that is issued at the
4		same time as an AT&T service order to connect resold service for the same
5		service in the same geographical area where both contain the same supplemental
6		information (i.e., remarks) will be processed into the Service Ordering
7		Processor materially ahead of the AT&T service order. Thus the Ameritech
8		service order lays claim to installation labor (the limiting factor in arranging for
9		installation) ahead of the AT&T order.
10		
11		If the Ameritech order was associated with a given day's last installation resource
12		the AT&T order would not be provisioned on the same day as the Ameritech
13		order. The Ameritech order and the AT&T order would have different due dates
14		in this case the AT&T order would be due for completion on the date when
15		installation resources were available but the Ameritech customer would have
16		service one complete day earlier than the AT&T customer. Ameritech would also
17		earn one additional day's revenue than would AT&T.
18		
19	Q.	WHAT ARE YOUR CONCERNS REGARDING THE STATUS OF
20		TESTING THE REPAIR AND MAINTENANCE INTERFACE?
21	Α	Ameritech has explained its processes related to receiving and acting on CLEC
22		requests for repair and maintenance through the T1M1 interface. Ameritech
23		advises that its repair and maintenance interface (T1M1 specification) is currently
24		in use by MCI and AT&T and other carriers for repair and maintenance processes
25		related to access services. But a close examination of this claim reveals that there
26		are significant differences between the repair and maintenance of access services
27		and those for local services.

1		Access services have been purchased from Ameritech by a relatively small
2		number of customers, primarily interexchange carriers that use the access services
3		to interconnect between Ameritech and their facilities. The T1M1 interface
4		obviously works for the limited number of access service customers many of
5		which are sophisticated corporations with technical expertise sufficient to interact
6		with T1M1 to report trouble conditions, initiate trouble tickets, follow-up on the
7		status of repair activities and ultimately to close the trouble ticket in connection
8		with Ameritech's trained technical staffs. To insist that because T1M1 works for
9		access service, it can readily handle repair and maintenance interface requirements
10		for local services, is a leap of faith that only adequate testing can bear out.
11		
12		AT&T has recently agreed to work with Ameritech in Illinois to validate how
13		T1M1 would work, or not work, in the local services market that AT&T
14		envisions. This would be a market with several times the number of customers
15		that could experience trouble contrasted with the number of access services
16		customers served by Ameritech. These resale and unbundled network element
17		end users would contact AT&T on a far more frequent basis and with less
18		accurate or reliable information as to trouble conditions and detailed descriptions
19		of what is wrong with their service, and would likely bring significantly greater
20		volumes of trouble tickets through the T1M1 interface than its current capabilities
21		can immediately handle.
22		
23	Q.	DO YOU HAVE ADDITIONAL CONCERNS REGARDING THE REPAIR
24		AND MAINTENANCE INTERFACE?
25	A.	Yes. AT&T's local service customers who experience dial tone problems or
26		"noise" on their lines would be expected to contact AT&T representatives to
27		report these problems. Obviously, the types of problems and the nature of